

Outline

- History of halo blight
- Survey of Michigan hop yards
- Fungicide field trials for halo blight of hop
 - ❖ Field trial
 - Correlation between downy mildew of hops and halo blight of hops
- Poison agar assay and discriminatory dose assay
 - ❖ Poison agar assay to determine EC₅₀ values and discriminatory dose assay
 - Fungicide sensitivity of Diaporthe population
 - Regional differences in fungicide sensitivity

Humulus lupulus: the common hop plant

- Vine growing diecious plant that grows over 20 feet tall
- Perennial plant that grows from mid spring to late summer
- The flower of the hop (cone) is used for its alpha and beta acids, that are a bittering and aroma agent in beer.
- 59,739 acres of hops are grown in the United States
- Top growers are Washington, Idaho, Oregon, and Michigan

The Michigan hop industry

- Hop production in Michigan started in the 1800s
 - disease and insect pressure shifted production to the PNW
- Modern Michigan hop production started approximately in 2007
- The Michigan hop industry covers 700 acres of land
- Top Cultivars: 'Centennial', 'Cascade', and 'Chinook'
- The number of harvested acres in Michigan have been decreasing since 2018

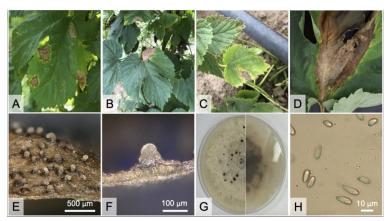


Photo by Bells Brewery, Photo by S.B.C.

History of halo blight

Michigan

- *Diaporthe* sp 1-MI
- Halo blight
- Southern Michigan
- ITS, TEF, Histone, Betatubulin(TI/Bt-2b)

Connecticut

- Diaporthe humulicola
- Diaporthe Leaf Spot
- Hamden, CT
- ITS, TEF, Histone, Betatubulin(TUBUF2/TUBUR1, T12/T22)

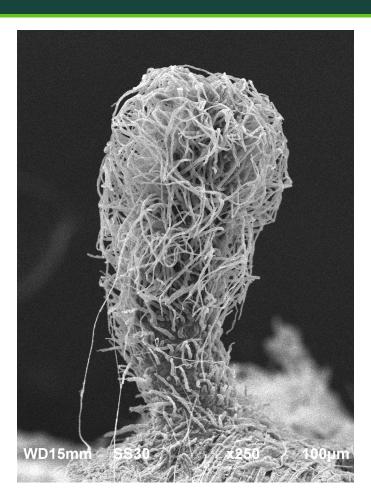
Allan-Perkins et al. 2020

Halo blight of hops

- Causes concentric lesions on leaves and premature desiccation of the cone
- Growers can lose up to 60% of their yield from this disease from shattering during sorting
- Lowers the quality of the hop cone and changes the aroma of the hop
- Overwinters on dried hop stems in the field, and colonize dried dead hop tissue



Pycnidia are formed on desiccated hop tissue



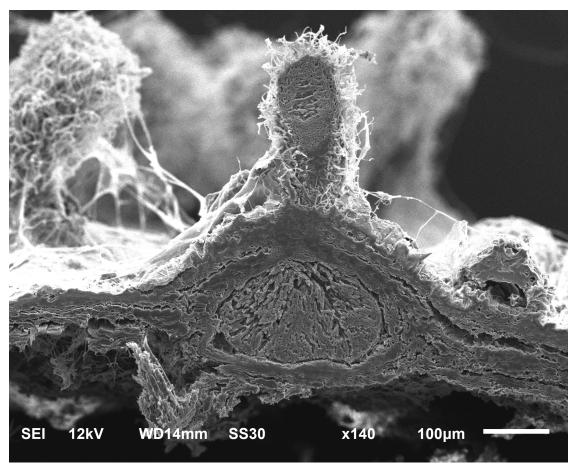
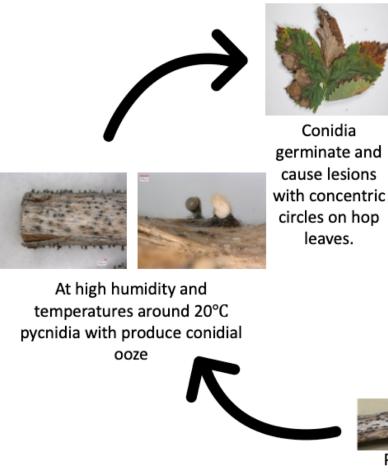
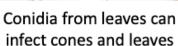


Photo by Ross Hatlen and Amy Albin

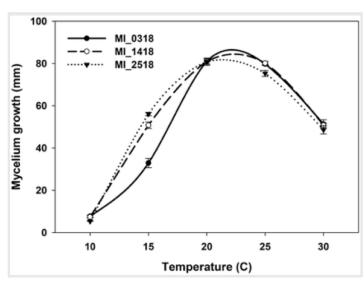

Photo by Ross Hatlen

MICHIGAN STATE UNIVERSITY



Photos by Ross Hatlen and Amy Albin

Pathogen overwinters as pycnidia on dried hop bines left after harvest.


Pycnidia develop on necrotic hop tissue

Pycnidia produce conidial ooze, and conidia are dispersed by rain events

Current literature on *Diaporthe* on hops

- Higher growth rates at 20-25 degrees Celsius and at high humidity (Higgins et al. 2020)
- Able to infect at least 12 cultivars: Centennial, Cascade, and Chinook (Allan-Perkins et al. 2020 and Higgins et al. 2020)
- Fungicides pyraclostrobin and boscalid will decrease the growth of this pathogen in vitro (Allan-Perkins et al. 2020)

Higgins et al. 2020

Disease so severe it made national news

Beer Heroes Battle Hops Disease In Great Lakes State

Jeff Kart Contributor © Sustainability

① JUNE 8, 202

A new disease called halo blight threatens Michigan hop production

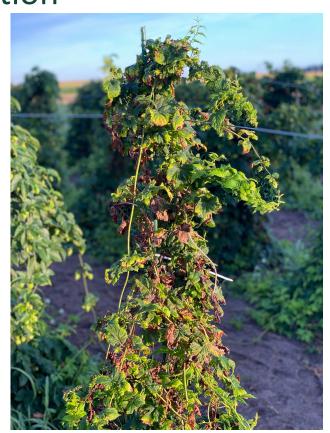
by American Phytopathological Society

Signs and symptoms of a Diaporthe sp. 1-MI on hop cones. Credit: Douglas S. Higgins, Ross J. Hatlen,...

New Fungus Causes Hop Disease Across Lower Peninsula

A new species of fungus is threatening Michigan's hop industry, according to researchers at Michigan State University in East Lansing. While craft brewers in the state are not facing a hop shortage, they prefer to use locally grown hops.

By Grace Turner - October 12, 2020



Summary of introduction

- Halo blight when not controlled causes high amounts of yield loss and is polycyclic
- The pathogen can overwinter on dead hop material

- Some fungicides decrease the growth of the fungi but have not been tested in a hopyard
- Halo blight changes the chemical profile of the hop cone

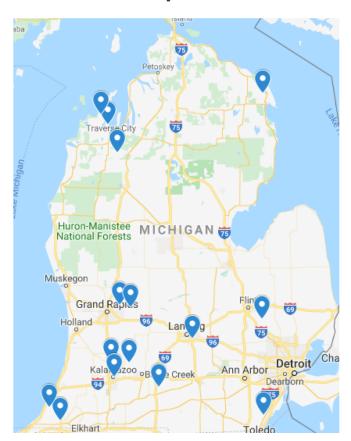
Objectives

- Determine what pathogens are greatly affecting hop yards in the Michigan
- Identify fungicides that are already registered for hops that can

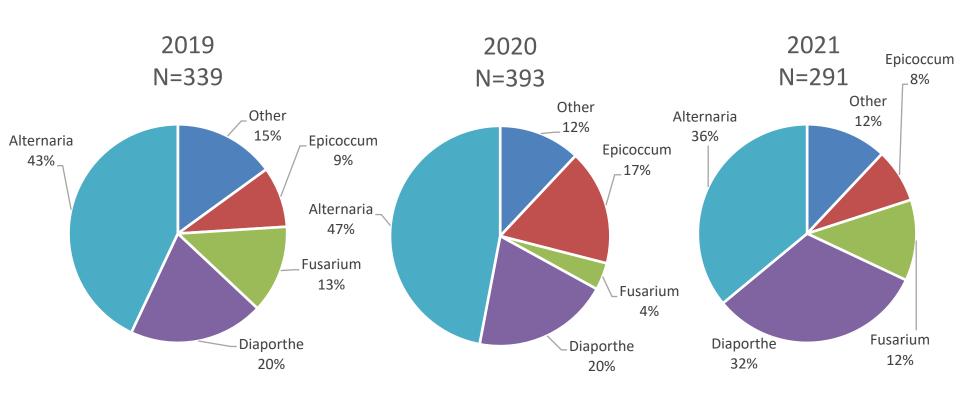
decrease the severity of halo blight caused by *Diaporthe*

humulicola through fungicide field testing

3. Test fungicides for the ability to decrease the growth rate of *Diaporthe humulicola* in a poison agar assay and test a population of *D. humulicola* for fungicide sensitivity


Objective 1: Fungal cone disease survey

 3 years (2019-2021) of surveying Michigan hop cone diseases


 Samples collected close to harvest, favoring fully developed cones

 Cone lesions were surface sterilized and then transferred to PDA amended with antibiotics

 Halo blight is in each hopyard sampled in Michigan

Diaporthe populations in Michigan are increasing!!

Halo blight of hops is not just in Michigan!

Growers throughout the Americas have sent

Number of

isolates Location

samples to our lab

Isolates are hyphal tipped transferred to produce pure cultures

Michigan

New York

118

Isolates are stored in glycerol at -80°C

Canada

No isolates of *D. humulicola* have been discovered in the PNW

Minnesota

Connecticut

Arkansas Indiana

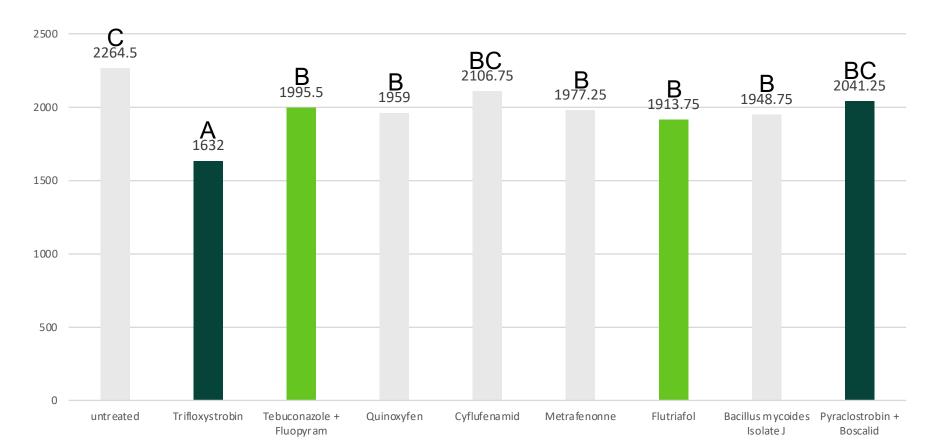
Summary of hop disease survey

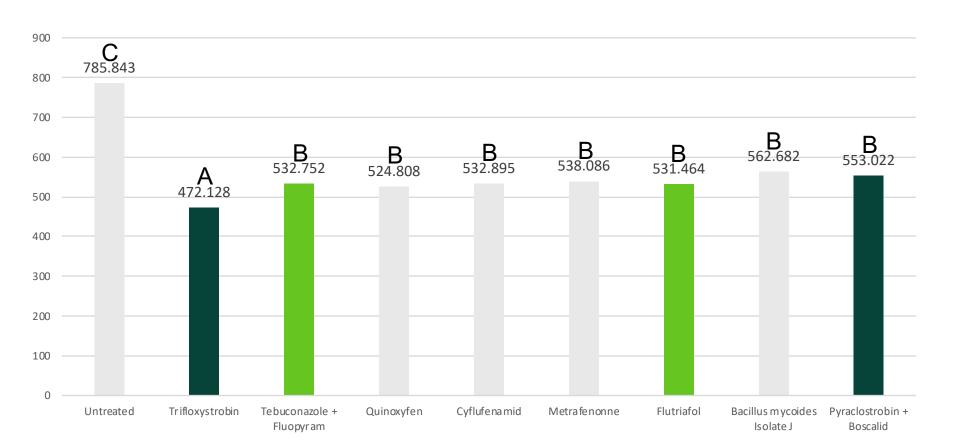
- Alternaria is the most prevalent pathogen, but is not the most economically important pathogen
- Diaporthe is now in every growing region in Michigan and seems to be spreading throughout the state.

Halo blight has been found in 6 states and 2 countries

Objective 2: Fungicide field trial

- Fungicide efficacy trial on short trellised hops
- 8 different fungicides that were already registered for hops for downy or powdery mildew control
- Random block trial with 4 replicates for each fungicide
- Repeated for 3 years
- Recorded disease severity and incidence




Fungicides tested for control of halo blight

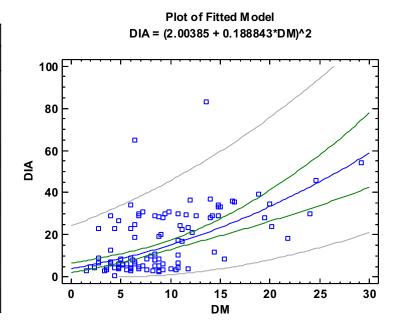
Active ingredient	FRAC group	Treatment	Manufacturer	Activity
Quinoxyfen	13	Quintec	Dow AgroSciences	Powdery mildew
Flutriafol	3	Rhyme	FMC	Broad spectrum
Trifloxystrobin	11	Flint extra	Bayer	Broad spectrum
Metrafenone	U8	Vivando	BASF Ag Products	Powdery mildew
Tebuconazole Fluopyram	7/3	Luna experience	Agrian	Broad spectrum
Pyraclostrobin Boscalid	7/11	Pristine	BASF Ag Products	Broad spectrum
Cyflufenamid	U6	Torino	Gowan	Powdery mildew
Bacillus mycoides Isolate J	P6	Lifegard WG	Certis	?? (Incudes SAR)
Untreated				

FRAC groups 11 and 3 can consistently decrease the incidence of halo blight infections

FRAC groups 11 and 3 can consistently decrease the severity of halo blight infections

Relationship of downy mildew and halo blight severity

- Fungicide efficacy trial on short trellised hops repeated for two years
- Hops are inoculated with hop downy mildew and then halo blight of hops
- Plants were then sprayed with a variety of fungicides
- Hops are rated for downy mildew for the first half of the season and then halo blight



Photos by Timothy Miles

There is a relationship between early season downy mildew infections and late season halo blight of hop infections

correlation between downy mildew and halo blight of hops						
Model	Correlation	R-Squared	ANOVA p value			
Square root-Y	0.5676	32.22%	<0.002			
Double square root	0.5642	31.83%	<0.002			
Linear	0.5546	30.76%	<0.002			
Logarithmic-Y square root-X	0.5469	29.92%	<0.002			
Square root-X	0.5454	29.75%	<0.002			
Exponential	0.5442	29.61%	<0.002			
Square root-Y logarithmic-X	0.5394	29.09%	<0.002			
Multiplicative	0.5289	27.97%	<0.002			
Square root-Y squared-X	0.5281	27.89%	<0.002			
Squared-X	0.5277	27.85%	<0.002			

Summary of fungicide field trials

- FRAC 3 and 11 chemicals can reduce the severity and incidence of halo blight
- Downy mildew infections in the early season can lead to higher amounts of halo blight lesions before harvest

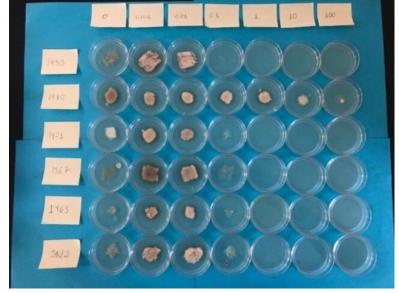
Some powdery mildew products (Quinoxyfen, Metrafenone, and Cyflufenamid) all seem to have some effect on the severity of halo blight lesions

trifloxystrobin fluopyram tebuconazole

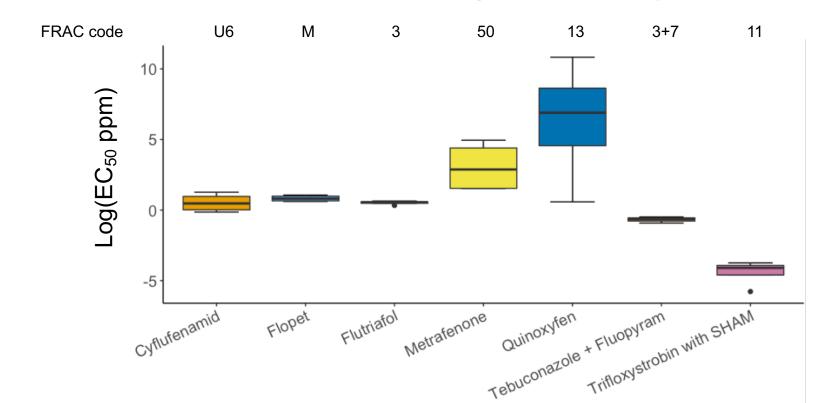
Objective 3: Fungicide poison agar test

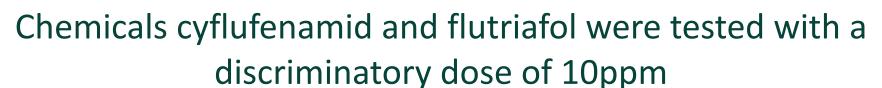
- Poison agar assay was conducted to produce EC50 values from the fungicides tested in the field experiment.
- Isolates 3M, 21M, CT, and CD6C isolates were used in this experiment.
- Isolates were grown on media with 0.001, 0.001, 0.01, 0, 1, 10, and 100ppm of the selected fungicide in triplicate
- Isolates were grown for seven days before measurements were conducted

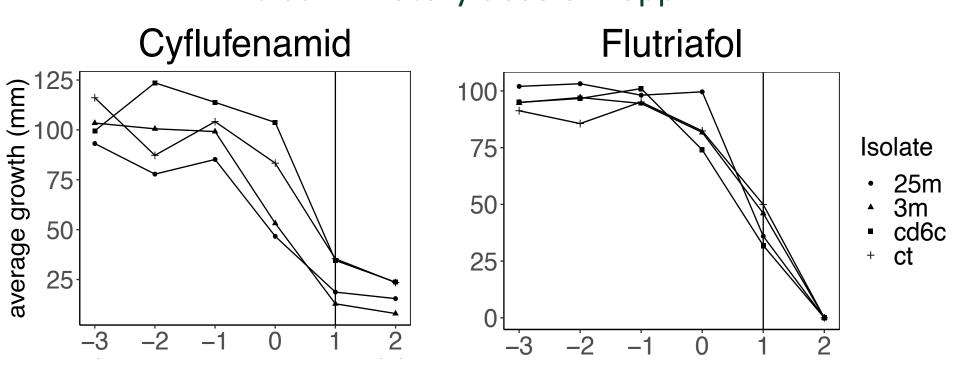
EC₅₀ Value


Concentration of a fungicide where the growth is reduced by 50% when compared to the control

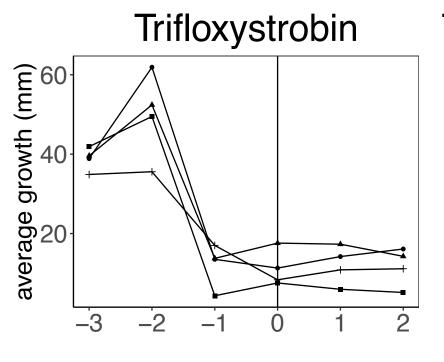
Dose Response Curve EC50 Dose [log]

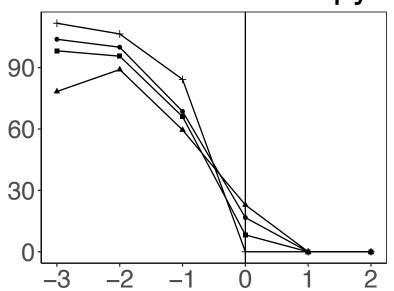

https://theory.labster.com/ec50/


Discriminatory Dose


A test dosage to determine if an isolate is resistant to a specific chemical

Bradley et al. 2019





Chemicals trifloxystrobin with SHAM and tebuconazole + fluopyram were tested with a discriminatory dose of 1ppm

Tebuconazole + Fluopyram

Isolate

- 25m
- 3m
- cd6c
- + C

Objective 3: Discriminatory dose assay

 Discriminatory dose assay of trifloxystrobin with sham, tebuconazole + fluopyram, cyflufenamid, and flutriafol

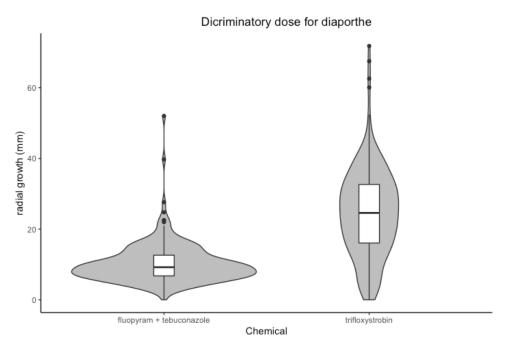
 Used isolate growth from EC₅₀ value experiment to determine discriminatory dose testing values

Plates were measured 7 days after subculture


	Number of
Location	isolates
Michigan	118
New York	47
Canada	24
Minnesota	11
Arkancac	1

arkansas

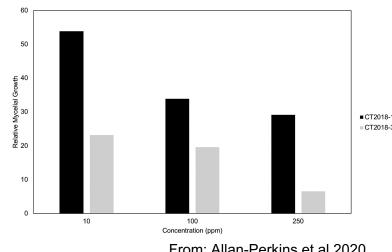
Indiana


There is more variation in size when exposed to flutriafol

- Violin plots are a combination of box plots and kernel density plots are are used to visualize distribution of numerical data
- Cyflufenamid has lower amount of growth compared to flutriafol and growth was consistent across different isolates
- Flutriafol had more variety in size after 7 days of growth

Some isolates have lessened sensitivity to trifloxystrobin with SHAM

- Fluopyram + tebuconazole seem to have the lowest average growth size of all fungicides
- Over half the isolates grown on trifloxystrobin with SHAM were able to grow bigger than the median size
- Trifloxystrobin is in two different products labeled for hops.



Differences in fungicide sensitivity based on regionality

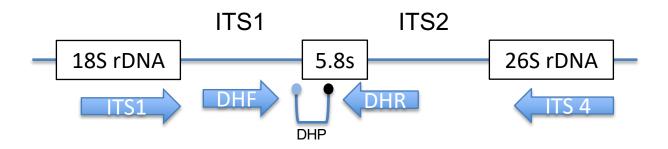
ANOVA DD and location								
Fungicide								
Locations	Tebuconazole + Floupyram	Flutriafol Measuremen	Cyflufenamid	Trifloxystrobin + SHAM				
Canada	7.266 A	14.8025 BC	11.4752 A	23.6469 A				
Michigan	9.86 B	17.4773 BC	12.2369 A	25.2744 A				
New York	10.332 BC	19.111 C	13.459 A	22.0535 A				
Minnesota	13.389 CD	15.8844 BC	13.5611 A	24.5374 A				
Indiana	14.652 BCD	11.2342 ABC	14.74167 A	24.6625 AB				
Arkansas	21.962 D	10.3775 A	16.8183 A	44.1467 B				
Location <i>P</i> value	<0.01	0.0149	0.3895	0.0268				

Summary of poison agar and discriminatory dose assay

- Quinoxyfen and metrafenone seem to decrease severity in field experiments, but do not decrease the growth of *D. humulicola* in petri dishes
- While trifloxystrobin works in the field and has a low EC_{50} value there seems to be parts of the *D*. humulicola population that have lowered sensitivity, and there seems to be different levels of sensitivity in a single yard

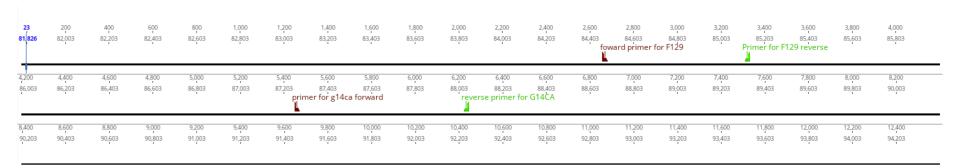
From: Allan-Perkins et al 2020

 There are slight differences based on regionality for fluopyam + tebuconazole, and flutriafol


Discussion

- FRAC 3 and 11 are our best options for the treatment of halo blight of hops
- Some *D. humulicola* isolates are less sensitive to trifloxystrobin, and sensitivity dose not seem to be consistent across a single yard
- Fluopyam + tebuconazole (Luna Experience) has a low EC50 value, a sensitive population, and can control the severity and incidence of the pathogen, thus is one of our top recommendations for control of halo blight

Future directions for halo blight of hops research


Primers and probes for identification of halo blight

- ITS region of D. humulicola was used to produce a qPCR assay for identification
- Still in validation stage
- Will be multiplexed with downy mildew and powdery mildew qPCR assays

Screening for QoI fungicide resistance

- Used D. humulicola genome to piece together cytochrome b (8 exons)
- Developed PCR primers to screen for know mutations F129, G137, G143
- Screen population from previous experiments and use this to determine isolates of interest for low coverage genome sequencing

Acknowledgements

Committee members:

Dr. Dan Chitwood

Dr. Marty Chilvers

Dr. Mary Hausbeck

Dr. Timothy Miles

Collaborators:

Dr. Alejandro Rojas

Dr. Julien Venne

Dr. Jan Byrne

Dr. Doug Higgins

Dr. Rob Sirrine

Erin Lizotte

Miles' lab past and present:

Dr. Timothy Miles

Dr. Marivi Colle

Dr. Safa Alzohairy

Dr. Jennie Klein-Gordon

Dr. Kerri Neugubauer

Lexi Heger

Nancy Sharma

Shay Szymanski

Sam Thompson

Jerri Gillett

Roger Sysak

And all Miles' undergrads

Biggest thanks to Michigan hop growers

QUESTIONS? hatlenro@msu.edu